Rainbow matchings in k‐partite hypergraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rainbow matchings for hypergraphs

For any posotive integer m, let [m] := {1, . . . ,m}. Let n, k, t be positive integers. Aharoni and Howard conjectured that if, for i ∈ [t], Fi ⊂ [n] := {(a1, . . . , ak) : aj ∈ [n] for j ∈ [k]} and |Fi| > (t−1)n, then there exist M ⊆ [n] such that |M | = t and |M ∩ Fi| = 1 for i ∈ [t] We show that this conjecture holds when n ≥ 3(k − 1)(t− 1). Let n, t, k1 ≥ k2 ≥ . . . ≥ kt be positive integer...

متن کامل

Matchings in balanced hypergraphs

cover in H. Berge and Las Vergnas (Annals of the New York Academy of Science, 175, 1970, 32-40) proved what may be called Kőnig’s Theorem for balanced hypergraphs, namely gd(H) = τd(H) for all weight functions d : E → N Conforti, Cornuéjols Kapoor and Vušković (Combinatorica, 16, 1996, 325-329) proved that the existence of a perfect matching is equivalent to the following analogue of Hall’s con...

متن کامل

Multicolored matchings in hypergraphs

For a collection of (not necessarily distinct) matchingsM = (M1,M2, . . . ,Mq) in a hypergraph, where each matching is of size t, a matching M of size t contained in the union ∪i=1Mi is called a rainbow matching if there is an injective mapping from M to M assigning to each edge e of M a matching Mi ∈M containing e. Let f(r, t) denote the maximum k for which there exists a collection of k match...

متن کامل

On Matchings in Hypergraphs

We show that if the largest matching in a k-uniform hypergraph G on n vertices has precisely s edges, and n > 3k2s/2 log k, then H has at most ( n k ) − ( n−s k ) edges and this upper bound is achieved only for hypergraphs in which the set of edges consists of all k-subsets which intersect a given set of s vertices. A k-uniform hypergraph G = (V,E) is a set of vertices V ⊆ N together with a fam...

متن کامل

Rainbow Matchings and Rainbow Connectedness

Aharoni and Berger conjectured that every collection of n matchings of size n+1 in a bipartite graph contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. The conjecture is known to hold when the matchings are m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2020

ISSN: 0024-6093,1469-2120

DOI: 10.1112/blms.12423