Rainbow matchings in k‐partite hypergraphs
نویسندگان
چکیده
منابع مشابه
On rainbow matchings for hypergraphs
For any posotive integer m, let [m] := {1, . . . ,m}. Let n, k, t be positive integers. Aharoni and Howard conjectured that if, for i ∈ [t], Fi ⊂ [n] := {(a1, . . . , ak) : aj ∈ [n] for j ∈ [k]} and |Fi| > (t−1)n, then there exist M ⊆ [n] such that |M | = t and |M ∩ Fi| = 1 for i ∈ [t] We show that this conjecture holds when n ≥ 3(k − 1)(t− 1). Let n, t, k1 ≥ k2 ≥ . . . ≥ kt be positive integer...
متن کاملMatchings in balanced hypergraphs
cover in H. Berge and Las Vergnas (Annals of the New York Academy of Science, 175, 1970, 32-40) proved what may be called Kőnig’s Theorem for balanced hypergraphs, namely gd(H) = τd(H) for all weight functions d : E → N Conforti, Cornuéjols Kapoor and Vušković (Combinatorica, 16, 1996, 325-329) proved that the existence of a perfect matching is equivalent to the following analogue of Hall’s con...
متن کاملMulticolored matchings in hypergraphs
For a collection of (not necessarily distinct) matchingsM = (M1,M2, . . . ,Mq) in a hypergraph, where each matching is of size t, a matching M of size t contained in the union ∪i=1Mi is called a rainbow matching if there is an injective mapping from M to M assigning to each edge e of M a matching Mi ∈M containing e. Let f(r, t) denote the maximum k for which there exists a collection of k match...
متن کاملOn Matchings in Hypergraphs
We show that if the largest matching in a k-uniform hypergraph G on n vertices has precisely s edges, and n > 3k2s/2 log k, then H has at most ( n k ) − ( n−s k ) edges and this upper bound is achieved only for hypergraphs in which the set of edges consists of all k-subsets which intersect a given set of s vertices. A k-uniform hypergraph G = (V,E) is a set of vertices V ⊆ N together with a fam...
متن کاملRainbow Matchings and Rainbow Connectedness
Aharoni and Berger conjectured that every collection of n matchings of size n+1 in a bipartite graph contains a rainbow matching of size n. This conjecture is related to several old conjectures of Ryser, Brualdi, and Stein about transversals in Latin squares. There have been many recent partial results about the Aharoni-Berger Conjecture. The conjecture is known to hold when the matchings are m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2020
ISSN: 0024-6093,1469-2120
DOI: 10.1112/blms.12423